Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.881
Filtrar
1.
Nature ; 628(8009): 863-871, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570687

RESUMO

Vertebrate organs require locally adapted blood vessels1,2. The gain of such organotypic vessel specializations is often deemed to be molecularly unrelated to the process of organ vascularization. Here, opposing this model, we reveal a molecular mechanism for brain-specific angiogenesis that operates under the control of Wnt7a/b ligands-well-known blood-brain barrier maturation signals3-5. The control mechanism relies on Wnt7a/b-dependent expression of Mmp25, which we find is enriched in brain endothelial cells. CRISPR-Cas9 mutagenesis in zebrafish reveals that this poorly characterized glycosylphosphatidylinositol-anchored matrix metalloproteinase is selectively required in endothelial tip cells to enable their initial migration across the pial basement membrane lining the brain surface. Mechanistically, Mmp25 confers brain invasive competence by cleaving meningeal fibroblast-derived collagen IV α5/6 chains within a short non-collagenous region of the central helical part of the heterotrimer. After genetic interference with the pial basement membrane composition, the Wnt-ß-catenin-dependent organotypic control of brain angiogenesis is lost, resulting in properly patterned, yet blood-brain-barrier-defective cerebrovasculatures. We reveal an organ-specific angiogenesis mechanism, shed light on tip cell mechanistic angiodiversity and thereby illustrate how organs, by imposing local constraints on angiogenic tip cells, can select vessels matching their distinctive physiological requirements.


Assuntos
Membrana Basal , Barreira Hematoencefálica , Encéfalo , Colágeno Tipo IV , Células Endoteliais , Neovascularização Fisiológica , Peixe-Zebra , Animais , Encéfalo/citologia , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/citologia , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Membrana Basal/metabolismo , Colágeno Tipo IV/metabolismo , Proteínas Wnt/metabolismo , Sistemas CRISPR-Cas/genética , Humanos , Especificidade de Órgãos , Via de Sinalização Wnt , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Movimento Celular , Meninges/citologia , Meninges/irrigação sanguínea , Meninges/metabolismo
3.
Nature ; 628(8007): 381-390, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480888

RESUMO

Our understanding of the neurobiology of primate behaviour largely derives from artificial tasks in highly controlled laboratory settings, overlooking most natural behaviours that primate brains evolved to produce1-3. How primates navigate the multidimensional social relationships that structure daily life4 and shape survival and reproductive success5 remains largely unclear at the single-neuron level. Here we combine ethological analysis, computer vision and wireless recording technologies to identify neural signatures of natural behaviour in unrestrained, socially interacting pairs of rhesus macaques. Single-neuron and population activity in the prefrontal and temporal cortex robustly encoded 24 species-typical behaviours, as well as social context. Male-female partners demonstrated near-perfect reciprocity in grooming, a key behavioural mechanism supporting friendships and alliances6, and neural activity maintained a running account of these social investments. Confronted with an aggressive intruder, behavioural and neural population responses reflected empathy and were buffered by the presence of a partner. Our findings reveal a highly distributed neurophysiological ledger of social dynamics, a potential computational foundation supporting communal life in primate societies, including our own.


Assuntos
Encéfalo , Macaca mulatta , Neurônios , Comportamento Social , Animais , Feminino , Masculino , Agressão/fisiologia , Encéfalo/citologia , Encéfalo/fisiologia , Empatia , Asseio Animal , Processos Grupais , Macaca mulatta/classificação , Macaca mulatta/fisiologia , Macaca mulatta/psicologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Lobo Temporal/citologia , Lobo Temporal/fisiologia , Neurônios/fisiologia
4.
Cell ; 187(8): 1936-1954.e24, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38490196

RESUMO

Microglia are brain-resident macrophages that shape neural circuit development and are implicated in neurodevelopmental diseases. Multiple microglial transcriptional states have been defined, but their functional significance is unclear. Here, we identify a type I interferon (IFN-I)-responsive microglial state in the developing somatosensory cortex (postnatal day 5) that is actively engulfing whole neurons. This population expands during cortical remodeling induced by partial whisker deprivation. Global or microglial-specific loss of the IFN-I receptor resulted in microglia with phagolysosomal dysfunction and an accumulation of neurons with nuclear DNA damage. IFN-I gain of function increased neuronal engulfment by microglia in both mouse and zebrafish and restricted the accumulation of DNA-damaged neurons. Finally, IFN-I deficiency resulted in excess cortical excitatory neurons and tactile hypersensitivity. These data define a role for neuron-engulfing microglia during a critical window of brain development and reveal homeostatic functions of a canonical antiviral signaling pathway in the brain.


Assuntos
Encéfalo , Interferon Tipo I , Microglia , Animais , Camundongos , Interferon Tipo I/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Peixe-Zebra , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento
5.
Nature ; 626(8000): 819-826, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326621

RESUMO

To navigate, we must continuously estimate the direction we are headed in, and we must correct deviations from our goal1. Direction estimation is accomplished by ring attractor networks in the head direction system2,3. However, we do not fully understand how the sense of direction is used to guide action. Drosophila connectome analyses4,5 reveal three cell populations (PFL3R, PFL3L and PFL2) that connect the head direction system to the locomotor system. Here we use imaging, electrophysiology and chemogenetic stimulation during navigation to show how these populations function. Each population receives a shifted copy of the head direction vector, such that their three reference frames are shifted approximately 120° relative to each other. Each cell type then compares its own head direction vector with a common goal vector; specifically, it evaluates the congruence of these vectors via a nonlinear transformation. The output of all three cell populations is then combined to generate locomotor commands. PFL3R cells are recruited when the fly is oriented to the left of its goal, and their activity drives rightward turning; the reverse is true for PFL3L. Meanwhile, PFL2 cells increase steering speed, and are recruited when the fly is oriented far from its goal. PFL2 cells adaptively increase the strength of steering as directional error increases, effectively managing the tradeoff between speed and accuracy. Together, our results show how a map of space in the brain can be combined with an internal goal to generate action commands, via a transformation from world-centric coordinates to body-centric coordinates.


Assuntos
Encéfalo , Drosophila melanogaster , Objetivos , Cabeça , Neurônios , Orientação Espacial , Navegação Espacial , Animais , Encéfalo/citologia , Encéfalo/fisiologia , Conectoma , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Cabeça/fisiologia , Locomoção/fisiologia , Neurônios/classificação , Neurônios/fisiologia , Orientação Espacial/fisiologia , Navegação Espacial/fisiologia , Fatores de Tempo
6.
Nature ; 627(8002): 149-156, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418876

RESUMO

The glymphatic movement of fluid through the brain removes metabolic waste1-4. Noninvasive 40 Hz stimulation promotes 40 Hz neural activity in multiple brain regions and attenuates pathology in mouse models of Alzheimer's disease5-8. Here we show that multisensory gamma stimulation promotes the influx of cerebrospinal fluid and the efflux of interstitial fluid in the cortex of the 5XFAD mouse model of Alzheimer's disease. Influx of cerebrospinal fluid was associated with increased aquaporin-4 polarization along astrocytic endfeet and dilated meningeal lymphatic vessels. Inhibiting glymphatic clearance abolished the removal of amyloid by multisensory 40 Hz stimulation. Using chemogenetic manipulation and a genetically encoded sensor for neuropeptide signalling, we found that vasoactive intestinal peptide interneurons facilitate glymphatic clearance by regulating arterial pulsatility. Our findings establish novel mechanisms that recruit the glymphatic system to remove brain amyloid.


Assuntos
Doença de Alzheimer , Amiloide , Encéfalo , Líquido Cefalorraquidiano , Líquido Extracelular , Ritmo Gama , Sistema Glinfático , Animais , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/prevenção & controle , Amiloide/metabolismo , Aquaporina 4/metabolismo , Astrócitos/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/patologia , Líquido Cefalorraquidiano/metabolismo , Modelos Animais de Doenças , Líquido Extracelular/metabolismo , Sistema Glinfático/fisiologia , Interneurônios/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Estimulação Elétrica
7.
Nature ; 627(8002): 157-164, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418877

RESUMO

The accumulation of metabolic waste is a leading cause of numerous neurological disorders, yet we still have only limited knowledge of how the brain performs self-cleansing. Here we demonstrate that neural networks synchronize individual action potentials to create large-amplitude, rhythmic and self-perpetuating ionic waves in the interstitial fluid of the brain. These waves are a plausible mechanism to explain the correlated potentiation of the glymphatic flow1,2 through the brain parenchyma. Chemogenetic flattening of these high-energy ionic waves largely impeded cerebrospinal fluid infiltration into and clearance of molecules from the brain parenchyma. Notably, synthesized waves generated through transcranial optogenetic stimulation substantially potentiated cerebrospinal fluid-to-interstitial fluid perfusion. Our study demonstrates that neurons serve as master organizers for brain clearance. This fundamental principle introduces a new theoretical framework for the functioning of macroscopic brain waves.


Assuntos
Encéfalo , Líquido Cefalorraquidiano , Líquido Extracelular , Neurônios , Potenciais de Ação , Encéfalo/citologia , Encéfalo/metabolismo , Ondas Encefálicas/fisiologia , Líquido Cefalorraquidiano/metabolismo , Líquido Extracelular/metabolismo , Sistema Glinfático/metabolismo , Cinética , Rede Nervosa/fisiologia , Neurônios/metabolismo , Optogenética , Tecido Parenquimatoso/metabolismo , Íons/metabolismo
8.
Nature ; 626(8000): 808-818, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326612

RESUMO

Neuronal signals that are relevant for spatial navigation have been described in many species1-10. However, a circuit-level understanding of how such signals interact to guide navigational behaviour is lacking. Here we characterize a neuronal circuit in the Drosophila central complex that compares internally generated estimates of the heading and goal angles of the fly-both of which are encoded in world-centred (allocentric) coordinates-to generate a body-centred (egocentric) steering signal. Past work has suggested that the activity of EPG neurons represents the fly's moment-to-moment angular orientation, or heading angle, during navigation2,11. An animal's moment-to-moment heading angle, however, is not always aligned with its goal angle-that is, the allocentric direction in which it wishes to progress forward. We describe FC2 cells12, a second set of neurons in the Drosophila brain with activity that correlates with the fly's goal angle. Focal optogenetic activation of FC2 neurons induces flies to orient along experimenter-defined directions as they walk forward. EPG and FC2 neurons connect monosynaptically to a third neuronal class, PFL3 cells12,13. We found that individual PFL3 cells show conjunctive, spike-rate tuning to both the heading angle and the goal angle during goal-directed navigation. Informed by the anatomy and physiology of these three cell classes, we develop a model that explains how this circuit compares allocentric heading and goal angles to build an egocentric steering signal in the PFL3 output terminals. Quantitative analyses and optogenetic manipulations of PFL3 activity support the model. Finally, using a new navigational memory task, we show that flies expressing disruptors of synaptic transmission in subsets of PFL3 cells have a reduced ability to orient along arbitrary goal directions, with an effect size in quantitative accordance with the prediction of our model. The biological circuit described here reveals how two population-level allocentric signals are compared in the brain to produce an egocentric output signal that is appropriate for motor control.


Assuntos
Encéfalo , Drosophila melanogaster , Objetivos , Cabeça , Vias Neurais , Orientação Espacial , Navegação Espacial , Animais , Potenciais de Ação , Encéfalo/citologia , Encéfalo/fisiologia , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Cabeça/fisiologia , Locomoção , Neurônios/metabolismo , Optogenética , Orientação Espacial/fisiologia , Percepção Espacial/fisiologia , Memória Espacial/fisiologia , Navegação Espacial/fisiologia , Transmissão Sináptica
10.
Cell ; 187(4): 962-980.e19, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309258

RESUMO

Microglia (MG), the brain-resident macrophages, play major roles in health and disease via a diversity of cellular states. While embryonic MG display a large heterogeneity of cellular distribution and transcriptomic states, their functions remain poorly characterized. Here, we uncovered a role for MG in the maintenance of structural integrity at two fetal cortical boundaries. At these boundaries between structures that grow in distinct directions, embryonic MG accumulate, display a state resembling post-natal axon-tract-associated microglia (ATM) and prevent the progression of microcavities into large cavitary lesions, in part via a mechanism involving the ATM-factor Spp1. MG and Spp1 furthermore contribute to the rapid repair of lesions, collectively highlighting protective functions that preserve the fetal brain from physiological morphogenetic stress and injury. Our study thus highlights key major roles for embryonic MG and Spp1 in maintaining structural integrity during morphogenesis, with major implications for our understanding of MG functions and brain development.


Assuntos
Encéfalo , Microglia , Axônios , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Macrófagos/fisiologia , Microglia/patologia , Morfogênese
11.
Cell ; 187(3): 712-732.e38, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38194967

RESUMO

Human brain development involves an orchestrated, massive neural progenitor expansion while a multi-cellular tissue architecture is established. Continuously expanding organoids can be grown directly from multiple somatic tissues, yet to date, brain organoids can solely be established from pluripotent stem cells. Here, we show that healthy human fetal brain in vitro self-organizes into organoids (FeBOs), phenocopying aspects of in vivo cellular heterogeneity and complex organization. FeBOs can be expanded over long time periods. FeBO growth requires maintenance of tissue integrity, which ensures production of a tissue-like extracellular matrix (ECM) niche, ultimately endowing FeBO expansion. FeBO lines derived from different areas of the central nervous system (CNS), including dorsal and ventral forebrain, preserve their regional identity and allow to probe aspects of positional identity. Using CRISPR-Cas9, we showcase the generation of syngeneic mutant FeBO lines for the study of brain cancer. Taken together, FeBOs constitute a complementary CNS organoid platform.


Assuntos
Encéfalo , Organoides , Humanos , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Matriz Extracelular/metabolismo , Células-Tronco Pluripotentes/metabolismo , Prosencéfalo/citologia , Técnicas de Cultura de Tecidos , Células-Tronco/metabolismo , Morfogênese
12.
Nucleic Acids Res ; 52(D1): D1033-D1041, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37904591

RESUMO

The brain is constituted of heterogeneous types of neuronal and non-neuronal cells, which are organized into distinct anatomical regions, and show precise regulation of gene expression during development, aging and function. In the current database release, STAB2 provides a systematic cellular map of the human and mouse brain by integrating recently published large-scale single-cell and single-nucleus RNA-sequencing datasets from diverse regions and across lifespan. We applied a hierarchical strategy of unsupervised clustering on the integrated single-cell transcriptomic datasets to precisely annotate the cell types and subtypes in the human and mouse brain. Currently, STAB2 includes 71 and 61 different cell subtypes defined in the human and mouse brain, respectively. It covers 63 subregions and 15 developmental stages of human brain, and 38 subregions and 30 developmental stages of mouse brain, generating a comprehensive atlas for exploring spatiotemporal transcriptomic dynamics in the mammalian brain. We also augmented web interfaces for querying and visualizing the gene expression in specific cell types. STAB2 is freely available at https://mai.fudan.edu.cn/stab2.


Assuntos
Encéfalo , Bases de Dados Genéticas , Neurônios , Análise da Expressão Gênica de Célula Única , Animais , Humanos , Camundongos , Atlas como Assunto , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Neurônios/metabolismo , Transcriptoma , Conjuntos de Dados como Assunto
13.
Psychoneuroendocrinology ; 160: 106666, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37951085

RESUMO

Although intranasal oxytocin administration to tap into central functions is the most commonly used non-invasive means for exploring oxytocin's role in human cognition and behavior, the way by which intranasal oxytocin acts on the brain is not yet fully understood. Recent research suggests that brain regions densely populated with oxytocin receptors may play a central role in intranasal oxytocin's action mechanisms in the brain. In particular, intranasal oxytocin may act directly on (subcortical) regions rich in oxytocin receptors via binding to these receptors while only indirectly affecting other (cortical) regions via their neural connections to oxytocin receptor-enriched regions. Aligned with this notion, the current study adopted a novel approach to test 1) whether the connections between oxytocin receptor-enriched regions (i.e., the thalamus, pallidum, caudate nucleus, putamen, and olfactory bulbs) and other regions in the brain were responsive to intranasal oxytocin administration, and 2) whether oxytocin-induced effects varied as a function of age. Forty-six young (24.96 ± 3.06 years) and 44 older (69.89 ± 2.99 years) participants were randomized, in a double-blind procedure, to self-administer either intranasal oxytocin or placebo before resting-state fMRI. Results supported age-dependency in the effects of intranasal oxytocin administration on connectivity between oxytocin receptor-enriched regions and other regions in the brain. Specifically, compared to placebo, oxytocin decreased both connectivity density and connectivity strength of the thalamus for young participants while it increased connectivity density and connectivity strength of the caudate for older participants. These findings inform the mechanisms underlying the effects of exogenous oxytocin on brain function and highlight the importance of age in these processes.


Assuntos
Encéfalo , Ocitocina , Receptores de Ocitocina , Ocitocina/administração & dosagem , Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Envelhecimento , Humanos , Adulto , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética , Administração Intranasal , Receptores de Ocitocina/metabolismo , Vias Neurais
14.
Nature ; 625(7993): 101-109, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38093010

RESUMO

Recent technological innovations have enabled the high-throughput quantification of gene expression and epigenetic regulation within individual cells, transforming our understanding of how complex tissues are constructed1-6. However, missing from these measurements is the ability to routinely and easily spatially localize these profiled cells. We developed a strategy, Slide-tags, in which single nuclei within an intact tissue section are tagged with spatial barcode oligonucleotides derived from DNA-barcoded beads with known positions. These tagged nuclei can then be used as an input into a wide variety of single-nucleus profiling assays. Application of Slide-tags to the mouse hippocampus positioned nuclei at less than 10 µm spatial resolution and delivered whole-transcriptome data that are indistinguishable in quality from ordinary single-nucleus RNA-sequencing data. To demonstrate that Slide-tags can be applied to a wide variety of human tissues, we performed the assay on brain, tonsil and melanoma. We revealed cell-type-specific spatially varying gene expression across cortical layers and spatially contextualized receptor-ligand interactions driving B cell maturation in lymphoid tissue. A major benefit of Slide-tags is that it is easily adaptable to almost any single-cell measurement technology. As a proof of principle, we performed multiomic measurements of open chromatin, RNA and T cell receptor (TCR) sequences in the same cells from metastatic melanoma, identifying transcription factor motifs driving cancer cell state transitions in spatially distinct microenvironments. Slide-tags offers a universal platform for importing the compendium of established single-cell measurements into the spatial genomics repertoire.


Assuntos
Código de Barras de DNA Taxonômico , Genômica , Animais , Humanos , Camundongos , Encéfalo/citologia , Encéfalo/metabolismo , Cromatina/genética , Cromatina/metabolismo , Código de Barras de DNA Taxonômico/métodos , Epigênese Genética , Perfilação da Expressão Gênica , Genômica/métodos , Melanoma/genética , Melanoma/patologia , Tonsila Palatina/citologia , Tonsila Palatina/metabolismo , Receptores de Antígenos de Linfócitos T/genética , RNA/genética , Análise de Célula Única/métodos , Transcriptoma/genética , Microambiente Tumoral , Hipocampo/citologia , Hipocampo/metabolismo , Análise da Expressão Gênica de Célula Única , Especificidade de Órgãos , Ligantes , Elementos de Resposta/genética , Fatores de Transcrição/metabolismo
15.
Nature ; 626(7997): 212-220, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086419

RESUMO

Transcriptional enhancers act as docking stations for combinations of transcription factors and thereby regulate spatiotemporal activation of their target genes1. It has been a long-standing goal in the field to decode the regulatory logic of an enhancer and to understand the details of how spatiotemporal gene expression is encoded in an enhancer sequence. Here we show that deep learning models2-6, can be used to efficiently design synthetic, cell-type-specific enhancers, starting from random sequences, and that this optimization process allows detailed tracing of enhancer features at single-nucleotide resolution. We evaluate the function of fully synthetic enhancers to specifically target Kenyon cells or glial cells in the fruit fly brain using transgenic animals. We further exploit enhancer design to create 'dual-code' enhancers that target two cell types and minimal enhancers smaller than 50 base pairs that are fully functional. By examining the state space searches towards local optima, we characterize enhancer codes through the strength, combination and arrangement of transcription factor activator and transcription factor repressor motifs. Finally, we apply the same strategies to successfully design human enhancers, which adhere to enhancer rules similar to those of Drosophila enhancers. Enhancer design guided by deep learning leads to better understanding of how enhancers work and shows that their code can be exploited to manipulate cell states.


Assuntos
Células , Aprendizado Profundo , Drosophila melanogaster , Elementos Facilitadores Genéticos , Biologia Sintética , Animais , Humanos , Animais Geneticamente Modificados/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Fatores de Transcrição/metabolismo , Células/classificação , Células/metabolismo , Neuroglia/metabolismo , Encéfalo/citologia , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Proteínas Repressoras/metabolismo
16.
Nature ; 624(7991): 343-354, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092912

RESUMO

In mammalian brains, millions to billions of cells form complex interaction networks to enable a wide range of functions. The enormous diversity and intricate organization of cells have impeded our understanding of the molecular and cellular basis of brain function. Recent advances in spatially resolved single-cell transcriptomics have enabled systematic mapping of the spatial organization of molecularly defined cell types in complex tissues1-3, including several brain regions (for example, refs. 1-11). However, a comprehensive cell atlas of the whole brain is still missing. Here we imaged a panel of more than 1,100 genes in approximately 10 million cells across the entire adult mouse brains using multiplexed error-robust fluorescence in situ hybridization12 and performed spatially resolved, single-cell expression profiling at the whole-transcriptome scale by integrating multiplexed error-robust fluorescence in situ hybridization and single-cell RNA sequencing data. Using this approach, we generated a comprehensive cell atlas of more than 5,000 transcriptionally distinct cell clusters, belonging to more than 300 major cell types, in the whole mouse brain with high molecular and spatial resolution. Registration of this atlas to the mouse brain common coordinate framework allowed systematic quantifications of the cell-type composition and organization in individual brain regions. We further identified spatial modules characterized by distinct cell-type compositions and spatial gradients featuring gradual changes of cells. Finally, this high-resolution spatial map of cells, each with a transcriptome-wide expression profile, allowed us to infer cell-type-specific interactions between hundreds of cell-type pairs and predict molecular (ligand-receptor) basis and functional implications of these cell-cell interactions. These results provide rich insights into the molecular and cellular architecture of the brain and a foundation for functional investigations of neural circuits and their dysfunction in health and disease.


Assuntos
Encéfalo , Análise da Expressão Gênica de Célula Única , Animais , Camundongos , Encéfalo/citologia , Comunicação Celular , Perfilação da Expressão Gênica , Hibridização in Situ Fluorescente/métodos , Ligantes , Vias Neurais , Transcriptoma
17.
Nature ; 624(7991): 366-377, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092913

RESUMO

Cytosine DNA methylation is essential in brain development and is implicated in various neurological disorders. Understanding DNA methylation diversity across the entire brain in a spatial context is fundamental for a complete molecular atlas of brain cell types and their gene regulatory landscapes. Here we used single-nucleus methylome sequencing (snmC-seq3) and multi-omic sequencing (snm3C-seq)1 technologies to generate 301,626 methylomes and 176,003 chromatin conformation-methylome joint profiles from 117 dissected regions throughout the adult mouse brain. Using iterative clustering and integrating with companion whole-brain transcriptome and chromatin accessibility datasets, we constructed a methylation-based cell taxonomy with 4,673 cell groups and 274 cross-modality-annotated subclasses. We identified 2.6 million differentially methylated regions across the genome that represent potential gene regulation elements. Notably, we observed spatial cytosine methylation patterns on both genes and regulatory elements in cell types within and across brain regions. Brain-wide spatial transcriptomics data validated the association of spatial epigenetic diversity with transcription and improved the anatomical mapping of our epigenetic datasets. Furthermore, chromatin conformation diversities occurred in important neuronal genes and were highly associated with DNA methylation and transcription changes. Brain-wide cell-type comparisons enabled the construction of regulatory networks that incorporate transcription factors, regulatory elements and their potential downstream gene targets. Finally, intragenic DNA methylation and chromatin conformation patterns predicted alternative gene isoform expression observed in a whole-brain SMART-seq2 dataset. Our study establishes a brain-wide, single-cell DNA methylome and 3D multi-omic atlas and provides a valuable resource for comprehending the cellular-spatial and regulatory genome diversity of the mouse brain.


Assuntos
Encéfalo , Metilação de DNA , Epigenoma , Multiômica , Análise de Célula Única , Animais , Camundongos , Encéfalo/citologia , Encéfalo/metabolismo , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Citosina/metabolismo , Conjuntos de Dados como Assunto , Fatores de Transcrição/metabolismo , Transcrição Gênica
18.
Nature ; 624(7991): 403-414, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092914

RESUMO

The brain controls nearly all bodily functions via spinal projecting neurons (SPNs) that carry command signals from the brain to the spinal cord. However, a comprehensive molecular characterization of brain-wide SPNs is still lacking. Here we transcriptionally profiled a total of 65,002 SPNs, identified 76 region-specific SPN types, and mapped these types into a companion atlas of the whole mouse brain1. This taxonomy reveals a three-component organization of SPNs: (1) molecularly homogeneous excitatory SPNs from the cortex, red nucleus and cerebellum with somatotopic spinal terminations suitable for point-to-point communication; (2) heterogeneous populations in the reticular formation with broad spinal termination patterns, suitable for relaying commands related to the activities of the entire spinal cord; and (3) modulatory neurons expressing slow-acting neurotransmitters and/or neuropeptides in the hypothalamus, midbrain and reticular formation for 'gain setting' of brain-spinal signals. In addition, this atlas revealed a LIM homeobox transcription factor code that parcellates the reticulospinal neurons into five molecularly distinct and spatially segregated populations. Finally, we found transcriptional signatures of a subset of SPNs with large soma size and correlated these with fast-firing electrophysiological properties. Together, this study establishes a comprehensive taxonomy of brain-wide SPNs and provides insight into the functional organization of SPNs in mediating brain control of bodily functions.


Assuntos
Encéfalo , Perfilação da Expressão Gênica , Vias Neurais , Neurônios , Medula Espinal , Animais , Camundongos , Hipotálamo , Neurônios/metabolismo , Neuropeptídeos , Medula Espinal/citologia , Medula Espinal/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Neurotransmissores , Mesencéfalo/citologia , Formação Reticular/citologia , Eletrofisiologia , Cerebelo/citologia , Córtex Cerebral/citologia
19.
Nature ; 624(7991): 333-342, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092915

RESUMO

The function of the mammalian brain relies upon the specification and spatial positioning of diversely specialized cell types. Yet, the molecular identities of the cell types and their positions within individual anatomical structures remain incompletely known. To construct a comprehensive atlas of cell types in each brain structure, we paired high-throughput single-nucleus RNA sequencing with Slide-seq1,2-a recently developed spatial transcriptomics method with near-cellular resolution-across the entire mouse brain. Integration of these datasets revealed the cell type composition of each neuroanatomical structure. Cell type diversity was found to be remarkably high in the midbrain, hindbrain and hypothalamus, with most clusters requiring a combination of at least three discrete gene expression markers to uniquely define them. Using these data, we developed a framework for genetically accessing each cell type, comprehensively characterized neuropeptide and neurotransmitter signalling, elucidated region-specific specializations in activity-regulated gene expression and ascertained the heritability enrichment of neurological and psychiatric phenotypes. These data, available as an online resource ( www.BrainCellData.org ), should find diverse applications across neuroscience, including the construction of new genetic tools and the prioritization of specific cell types and circuits in the study of brain diseases.


Assuntos
Encéfalo , Perfilação da Expressão Gênica , Animais , Camundongos , Encéfalo/anatomia & histologia , Encéfalo/citologia , Encéfalo/metabolismo , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Hipotálamo/citologia , Hipotálamo/metabolismo , Mesencéfalo/citologia , Mesencéfalo/metabolismo , Neuropeptídeos/metabolismo , Neurotransmissores/metabolismo , Fenótipo , Rombencéfalo/citologia , Rombencéfalo/metabolismo , Análise da Expressão Gênica de Célula Única , Transcriptoma/genética
20.
Nature ; 624(7991): 355-365, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092919

RESUMO

Single-cell analyses parse the brain's billions of neurons into thousands of 'cell-type' clusters residing in different brain structures1. Many cell types mediate their functions through targeted long-distance projections allowing interactions between specific cell types. Here we used epi-retro-seq2 to link single-cell epigenomes and cell types to long-distance projections for 33,034 neurons dissected from 32 different regions projecting to 24 different targets (225 source-to-target combinations) across the whole mouse brain. We highlight uses of these data for interrogating principles relating projection types to transcriptomics and epigenomics, and for addressing hypotheses about cell types and connections related to genetics. We provide an overall synthesis with 926 statistical comparisons of discriminability of neurons projecting to each target for every source. We integrate this dataset into the larger BRAIN Initiative Cell Census Network atlas, composed of millions of neurons, to link projection cell types to consensus clusters. Integration with spatial transcriptomics further assigns projection-enriched clusters to smaller source regions than the original dissections. We exemplify this by presenting in-depth analyses of projection neurons from the hypothalamus, thalamus, hindbrain, amygdala and midbrain to provide insights into properties of those cell types, including differentially expressed genes, their associated cis-regulatory elements and transcription-factor-binding motifs, and neurotransmitter use.


Assuntos
Encéfalo , Epigenômica , Vias Neurais , Neurônios , Animais , Camundongos , Tonsila do Cerebelo , Encéfalo/citologia , Encéfalo/metabolismo , Sequência Consenso , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Hipotálamo/citologia , Mesencéfalo/citologia , Vias Neurais/citologia , Neurônios/metabolismo , Neurotransmissores/metabolismo , Sequências Reguladoras de Ácido Nucleico , Rombencéfalo/citologia , Análise de Célula Única , Tálamo/citologia , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...